
Sage Advice Part 3: Predictive Index Impact 
Analysis -- Know Before you CREATE 

Scott Richard Hayes, DBI Software, @dbisoftware 

Session Code: D11 
Wednesday, 16 November, 11:00-12:00 
Platform: DB2 for Linux, UNIX, and Windows 
 
 



Submitted to IDUG… 
Abstract & Key Bullet Points 

• Whenever a DBA has an index they want to create to solve a 
performance issue, there is often someone raising an objection 
“But will this new index cause the database/application any 
harm?” For those that desire to successfully create indexes 
with confidence, this session will present a new method for 
predictively measuring the impacts of any new indexes so that 
informed decisions can be fearlessly made. Example commands 
and SQL will be provided. 

• This session continues the Sage Advice series from Parts 1 
(Weight Analysis) and 2 (Advanced Index Benefit Analysis) 

• Bullet Objectives in slide notes… 
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Our Agenda today… 

• Quick Review of Sage 
Advice, Part 1, Weight 
Analysis 

• Quick Review of Sage 
Advice, Part 2, Advanced 
Index Benefit Analysis 

• Sage Advice, Part 3, 
Predicting Index Impact 
Analysis 
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SAGE ADVICE PART 1:  
WORKLOAD WEIGHT ANALYSIS 

Part 1: Quick Review 
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How much does it weigh? 
TOTAL weight and RELATIVE weight… 
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We have a WEIGHT “Opportunity for Improvement” 
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Table Performance Analysis 
Table Rows Read per Transaction (TBRRTX) & WEIGHT 

• Not every TX accesses every table, so we expect Rows 
Read/#TX to be a small average, normally < 10, and often 3 or 
less 
• TBRRTX tells you where you have Data Page scans occurring 

• > 10, likely opportunity for improvement 

• > 100, definitely opportunity for improvement 

• > 1,000, crisis!  DO NOT UPGRADE HARDWARE 

• In addition to the cost per TX, find the % of DB Rows 
Read (Relative Weight) by expressing Table Rows 
Read x 100 / Sum of all Rows Read. 
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Examples 
Table Relative Weights and Read I/O Costs 
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SQL WEIGHTS 
Aggregated, Concentrated Costs, & their WEIGHTS 

• Now that you know the TABLES with the heaviest WEIGHTS, 
what is the heavy SQL driving I/O to the heavy tables? 
• STMT_TEXT like %TABLE_NAME% has some limitations 

• grep –i “TABLE_NAME” has similar limitations 

• What are the HEAVIEST SQL – By table?  Across the DB? 
• CPU % 

• Rows Read % 

• Logical Reads % 

• Physical Reads % 

• Rows Written % 

• Execution Time % 

• Sort Time % 
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SQL HEAVY WEIGHTS 
by CPU Time (microseconds) 
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SQL HEAVY WEIGHTS 
by CPU Time (microseconds) - Examples 
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Take a picture of your luggage before you fly- 
- easy description when lost 
- documents bag condition 

• #WISDOM 



SAGE ADVICE PART 2:  
ADVANCED INDEX BENEFIT 
ANALYSIS 

Part 2: Quick Review 
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OPTIMIZING INDEX SOLUTIONS 

So, you found a heavy weight SQL statement, and you passed it to the Design 
Advisor (db2advis), and the Design Advisor suggests that you create 3, 5, 11, or 
13 indexes for a solution!   

HOW MANY?   

REALLY?   
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Optimizing Index Solutions 
Solving a “Heavy” Query 
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Optimizing Index Solutions 
The IBM Design Advisor (db2advis) gives 5 Indexes! 
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What is the benefit, 

or relative value, 

of Each Index? 

185,651? 

*sigh* 

We can do better! 



Optimizing Index Solutions 
Relative Benefit Value Analysis 

• Two Methods to Consider 

• Index Addition – Add indexes one at a time to assess 
individual value 

• Index Subtraction – Subtract Indexes one at a time from the 
solution set to assess the value lost 

• Design Advisor can be overly aggressive on Index Only Access 

• Sometimes additional columns are added to existing indexes 
to achieve IX Only access – we anticipate these will have 
less value 

• Give consideration to predicates involved when making final 
decisions on which indexes to implement 
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Optimizing Index Solutions 
Index Addition 1 

• Start with a clean Explain & Advise Environment 
• Delete from Explain_Instance 

• Delete from Advise_Index 

• Explain the statement 
•  db2batch -d dbipocdb -f 3Table_Heavy_Query.sql -o e explain 
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Optimizing Index Solutions 
Index Addition 2 

• Find the original/”Before” Explain Cost 
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Optimizing Index Solutions 
Index Addition 3B – alternate method 

• Populate the ADVISE_INDEX table - CLP 

• db2 "select current explain mode from sysibm.sysdummy1“ 
• “NO” 

• db2 "set current explain mode recommend indexes“ 

• db2 -stvf 3Table_Heavy_Query.sql 

• Does not execute the query! 

• Populates the ADVISE_INDEX table 

• db2 “set current explain mode NO” 

• So you can run queries again! 

21 



Optimizing Index Solutions 
ADVISE_INDEX Table 1 

• USE_INDEX Column – the “magic” 
• ‘Y’ Index Recommended or Evaluated 

• ‘N’ Index not to be Recommended or Evaluated 

• ‘R’ An existing clustering RID index was recommended by Design Advisor 
to be unclustered – this is the case when a new clustering RID index is 
recommended for the table 

• ‘I’ Ignore an existing non-unique index for Evaluation.  The EXISTS 
column should be ‘Y’ in this case or the index will not be ignored 

• Several other interesting and helpful columns too 
• See sample query and results, next slide 

22 



Optimizing Index Solutions 
ADVISE_INDEX Table 2 
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Optimizing Index Solutions 
So, what are those proposed indexes worth? 

• set current explain mode EVALUATE INDEXES 
• USE_INDEX = ‘Y’ for all Proposed Indexes 

• $ db2 -tvf 3Table_Heavy_Query.sql 

• set current explain mode NO 

• $ db2 –tvf Query_In_Slide_Notes.sql 

• 376 timerons 

• Down from 81,524 
• 99.54% Reduced 
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Optimizing Index Solutions 
Index Addition  

• What is the value of each index individually, in isolation? 

• Set USE_INDEX to ‘N’ for all Indexes 
• update advise_index set use_index='N';  

• For each proposed index: 
• Set USE_INDEX to ‘Y’ 

• Update ADVISE_INDEX set USE_INDEX = ‘Y’ where NAME = ‘IXNAME(N)’ 

• set current explain mode EVALUATE INDEXES 

• db2 -tvf 3Table_Heavy_Query.sql 

• Retrieve the TOTAL_COST from EXPLAIN_OPERATOR table 

• db2 –tvf Query_In_Slide_Notes.sql 

• Compute Savings Percentage 

• Repeat! 
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Optimizing Index Solutions 
Index Addition – 1st Index 
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Optimizing Index Solutions 
Index Addition – 2nd Index 
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Optimizing Index Solutions 
Index Addition – 3rd Index 
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Optimizing Index Solutions 
Index Addition – 4th Index 
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Optimizing Index Solutions 
Index Addition - Summary 

Index Name Timeron Savings Value % 

IDX1503092345460 0.0547 0.0000670 

IDX1503092345530 79679.8421 97.7376615 

IDX1503092346050 0.0000 0.0000000 

IDX1503092346070 74988.1343 91.9826733 

189.7204018 % 
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And the award for 

LEAST valuable 

index goes to… 

And the award for 

MOST valuable 

index goes to… 

2nd Place MVI 



Optimizing Index Solutions 
Compare Explain Plans 
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Optimizing Index Solutions 
Does a High Value Index have IX Access Only “Baggage”? 
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Let’s play Predicate BINGO! 

$ db2 –tvf Query_In_Notes.sql 

 

VERB_DESC & PROTOCOL 

are supporting IX Access Only 

 



SAGE ADVICE PART 3:  
PREDICTING INDEX IMPACT 
ANALYSIS 

Part 3: The New Stuff 
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DBA Performance Analysis Challenges 

1. What needs to be fixed or improved? 
• Make sure you are fighting the right fires - via Weight Analysis 

2. What are the optimal design solutions? 
• Make sure you are fighting the right fires with the right type of 

fire extinguishers and equipment – via Advanced Index Benefit 
Analysis 

3. Will proposed design solutions cause any inadvertent 
harm? Will benefits exceed expectations?  Can “multiple 
birds be killed with just one stone?” 
• Make sure you are fighting the right fires without causing 

inadvertent damaging explosions – via Predictive Index Impact 
Analysis 



Review 
The “Heavy_Query” – 90% of CPU & I/O 
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Review 
Explain Heavy SQL & Get Costs: 187,411 Timerons 



Review  
Get Recommended Indexes - 1  



Review  
Get Recommended Indexes - 2  

Advanced Index 

Benefit Analysis (AIBA) 

identifies that some 

indexes are more  

beneficial than others 

Let’s assume we 

want to create the 

last 4 indexes 

after AIBA 

We thus know the 

tables that we’ll be 

creating indexes on 

(impacted tables) 

Three Distinct 

Table Names 

are Impacted 



Predictive Index Impact Analysis (PIIA) – Step 1 
Determine SQL that Impacts the Impacted Tables 

• For each impacted table, determine the SQL queries that 
have contributed I/O 
• In Sage Advice Part 1, we looked at SQL queries that would find 

“heavy” queries contributing I/O to a table or the database overall 

• Recall that: 

• STMT_TEXT like %TABLE_NAME% has some limitations 

• grep –i “TABLE_NAME” has similar limitations 

• Query the package cache with MON_GET or SYSIBMADM views 

• Be mindful to include relevant  and significant workload timeframes 
when finding SQL  

• Consider capturing and concatenating workloads from 
different time periods 
• Sample query in notes 
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Predictive Index Impact Analysis (PIIA) – Step 2 
Determine the Distinct Impacting SQL  

• For efficiency, determine the DISTINCT SQL statements 
(workload) of SQL across the UNION ALL of impacted tables. 
• For Example: 

• SELECT A.C1, B.C1 FROM TB1 A, TB2 B WHERE A.ID1 = B.ID2 

• This SQL would contribute I/O to BOTH tables TB1 and TB2, but for PIIA it 
only needs to be analyzed once. 

• This step is optional but can save time and processing 

• By this point, you have determined dozens, hundreds, or 
maybe thousands of (distinct) SQL that contribute I/O to the 
impacted tables.  Henceforth, we’ll simply call this the 
“IMPACTING WORKLOAD” 
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Predictive Index Impact Analysis (PIIA) – Step 3 
EXPLAIN the IMPACTING WORKLOAD  

• For each (distinct) SQL within the Impacting Workload: 
• Set USE_INDEX = ‘N’ for ALL Contemplated Indexes 

• EXPLAIN the SQL statement to learn its  current/original Timeron Cost 
(Explain Mode EVALUATE INDEXES). 

• Set USE_INDEX = ‘Y’ for the Indexes that you intend to create per 
your AIBA (4 out of 5 in our earlier example) 

• EXPLAIN the SQL statement to learn its  forecasted/new Timeron Cost 

• Compute Original Timeron Cost – New Timeron Cost = Timeron 

Savings (or degradation if negative), and determine the Savings 
Percent.  Savings% could be multiplied against workload execution 
totals to predict new relative weights (heaviness)  

• Tabulate the sums of all Original Timeron Costs and New Timeron 
Costs to understand overall workload impact 
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Predictive Index Impact Analysis (PIIA) 
ILLUSTRATED  

• From earlier slides, there were 5 proposed indexes against 3 
different tables. 
• Based on AIBA, we’re assuming that 4 of the 5 indexes will be created: 

IDX1602060629500, IDX1602060630060, IDX1602060630030, and 
IDX1602060629480 

• For our Impacting Workload, for sake of example, we’ll assume there 
are 10 distinct statements driving I/O to our 3 different tables.  Each of 
these will be stored individually in a file Snn.SQL where “nn” is the 
distinct statement number.  For convenience, our original heavy query 
will be contained within file S00.SQL.  

 

•   
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Predictive Index Impact Analysis for S00.sql 
Original: 187,411 New: 1,760 Savings: 185,651   99.06%  



Predictive Index Impact Analysis for S01.sql 
Original: 93,690 New: 26 Savings: 93,664      99.97%  



Predictive Index Impact Analysis for S02.sql 
Original: 93,756 New: 39 Savings: 93,717   99.96%  



Predictive Index Impact Analysis for S03.sql 
Original: 93,677 New: 14,053 Savings: 85,624   91.40%  



Predictive Index Impact Analysis for S04.sql 
Original: 93,690 New: 4,192 Savings: 89,498  95.53%  



Predictive Index Impact Analysis for S05.sql 
Original: 27,483 New: 4,268 Savings: 23,215  84.47%  



Predictive Index Impact Analysis for S06.sql 
Original: 93,677 New: 59 Savings: 93,618   99.94%  



Predictive Index Impact Analysis for S07.sql 
Original: 40,330  New: 54  Savings: 40,276   99.87%  

Predictive Index Impact Analysis for S08.sql 
Original: 27,483  New: 4,268  Savings: 23,215   84.47%  

Predictive Index Impact Analysis for S09.sql 
Original: 93,756  New:  39  Savings:  93,717   99.96%  



Predictive Index Impact Analysis 
The Grand Finale – Drum Roll Please! 
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PIIA – Do you kill multiple birds with a few stones? Any 
adverse consequences? Safe to create indexes? 

Impacting Workload 

Query OLD NEW DIFF 

0 187411 1760 -185651 

1 93690 26 -93664 

2 93756 39 -93717 

3 93677 14053 -85624 

4 93690 4192 -89498 

5 27483 4268 -23215 

6 93677 59 -93618 

7 40330 54 -40276 

8 27483 4268 -23215 

9 93756 39 -93717 

Total 844953 28758 -816195 

Off the chart savings! 
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COMMERCIAL BREAK- Folks! Don’t Do this the Hard 
Way!  It’s Time Consuming and Error Prone! 
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DBI’s Brother-Panther® Automates this Analysis! 



COMMERCIAL BREAK- Folks! Don’t Do this the Hard 
Way!  It’s Time Consuming and Error Prone! 
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DBI’s Brother-Panther® Automates this Analysis! 



Scott Richard Hayes 
DBI Software, @dbisoftware 
sales@dbisoftware.com 
@srhayes 

[D11] Sage Advice Part 3: Predictive 
Index Impact Analysis -- Know Before 
you CREATE 

Please fill out your session 

evaluation before leaving! 

mailto:sales@dbisoftware.com

