
Sage Advice Part 3: Predictive Index Impact
Analysis -- Know Before you CREATE

Scott Richard Hayes, DBI Software, @dbisoftware

Session Code: D11
Wednesday, 16 November, 11:00-12:00
Platform: DB2 for Linux, UNIX, and Windows

Submitted to IDUG…
Abstract & Key Bullet Points

• Whenever a DBA has an index they want to create to solve a
performance issue, there is often someone raising an objection
“But will this new index cause the database/application any
harm?” For those that desire to successfully create indexes
with confidence, this session will present a new method for
predictively measuring the impacts of any new indexes so that
informed decisions can be fearlessly made. Example commands
and SQL will be provided.

• This session continues the Sage Advice series from Parts 1
(Weight Analysis) and 2 (Advanced Index Benefit Analysis)

• Bullet Objectives in slide notes…

2

Our Agenda today…

• Quick Review of Sage
Advice, Part 1, Weight
Analysis

• Quick Review of Sage
Advice, Part 2, Advanced
Index Benefit Analysis

• Sage Advice, Part 3,
Predicting Index Impact
Analysis

3

SAGE ADVICE PART 1:
WORKLOAD WEIGHT ANALYSIS

Part 1: Quick Review

4

How much does it weigh?
TOTAL weight and RELATIVE weight…

5

We have a WEIGHT “Opportunity for Improvement”

6

Table Performance Analysis
Table Rows Read per Transaction (TBRRTX) & WEIGHT

• Not every TX accesses every table, so we expect Rows
Read/#TX to be a small average, normally < 10, and often 3 or
less
• TBRRTX tells you where you have Data Page scans occurring

• > 10, likely opportunity for improvement

• > 100, definitely opportunity for improvement

• > 1,000, crisis! DO NOT UPGRADE HARDWARE

• In addition to the cost per TX, find the % of DB Rows
Read (Relative Weight) by expressing Table Rows
Read x 100 / Sum of all Rows Read.

7

Examples
Table Relative Weights and Read I/O Costs

8

SQL WEIGHTS
Aggregated, Concentrated Costs, & their WEIGHTS

• Now that you know the TABLES with the heaviest WEIGHTS,
what is the heavy SQL driving I/O to the heavy tables?
• STMT_TEXT like %TABLE_NAME% has some limitations

• grep –i “TABLE_NAME” has similar limitations

• What are the HEAVIEST SQL – By table? Across the DB?
• CPU %

• Rows Read %

• Logical Reads %

• Physical Reads %

• Rows Written %

• Execution Time %

• Sort Time %
10

SQL HEAVY WEIGHTS
by CPU Time (microseconds)

11

SQL HEAVY WEIGHTS
by CPU Time (microseconds) - Examples

12

Take a picture of your luggage before you fly-
- easy description when lost
- documents bag condition

• #WISDOM

SAGE ADVICE PART 2:
ADVANCED INDEX BENEFIT
ANALYSIS

Part 2: Quick Review

14

OPTIMIZING INDEX SOLUTIONS

So, you found a heavy weight SQL statement, and you passed it to the Design
Advisor (db2advis), and the Design Advisor suggests that you create 3, 5, 11, or
13 indexes for a solution!

HOW MANY?

REALLY?

15

Optimizing Index Solutions
Solving a “Heavy” Query

16

Optimizing Index Solutions
The IBM Design Advisor (db2advis) gives 5 Indexes!

17

What is the benefit,

or relative value,

of Each Index?

185,651?

sigh

We can do better!

Optimizing Index Solutions
Relative Benefit Value Analysis

• Two Methods to Consider

• Index Addition – Add indexes one at a time to assess
individual value

• Index Subtraction – Subtract Indexes one at a time from the
solution set to assess the value lost

• Design Advisor can be overly aggressive on Index Only Access

• Sometimes additional columns are added to existing indexes
to achieve IX Only access – we anticipate these will have
less value

• Give consideration to predicates involved when making final
decisions on which indexes to implement

18

Optimizing Index Solutions
Index Addition 1

• Start with a clean Explain & Advise Environment
• Delete from Explain_Instance

• Delete from Advise_Index

• Explain the statement
• db2batch -d dbipocdb -f 3Table_Heavy_Query.sql -o e explain

19

Optimizing Index Solutions
Index Addition 2

• Find the original/”Before” Explain Cost

20

Optimizing Index Solutions
Index Addition 3B – alternate method

• Populate the ADVISE_INDEX table - CLP

• db2 "select current explain mode from sysibm.sysdummy1“
• “NO”

• db2 "set current explain mode recommend indexes“

• db2 -stvf 3Table_Heavy_Query.sql

• Does not execute the query!

• Populates the ADVISE_INDEX table

• db2 “set current explain mode NO”

• So you can run queries again!

21

Optimizing Index Solutions
ADVISE_INDEX Table 1

• USE_INDEX Column – the “magic”
• ‘Y’ Index Recommended or Evaluated

• ‘N’ Index not to be Recommended or Evaluated

• ‘R’ An existing clustering RID index was recommended by Design Advisor
to be unclustered – this is the case when a new clustering RID index is
recommended for the table

• ‘I’ Ignore an existing non-unique index for Evaluation. The EXISTS
column should be ‘Y’ in this case or the index will not be ignored

• Several other interesting and helpful columns too
• See sample query and results, next slide

22

Optimizing Index Solutions
ADVISE_INDEX Table 2

23

Optimizing Index Solutions
So, what are those proposed indexes worth?

• set current explain mode EVALUATE INDEXES
• USE_INDEX = ‘Y’ for all Proposed Indexes

• $ db2 -tvf 3Table_Heavy_Query.sql

• set current explain mode NO

• $ db2 –tvf Query_In_Slide_Notes.sql

• 376 timerons

• Down from 81,524
• 99.54% Reduced

 24

Optimizing Index Solutions
Index Addition

• What is the value of each index individually, in isolation?

• Set USE_INDEX to ‘N’ for all Indexes
• update advise_index set use_index='N';

• For each proposed index:
• Set USE_INDEX to ‘Y’

• Update ADVISE_INDEX set USE_INDEX = ‘Y’ where NAME = ‘IXNAME(N)’

• set current explain mode EVALUATE INDEXES

• db2 -tvf 3Table_Heavy_Query.sql

• Retrieve the TOTAL_COST from EXPLAIN_OPERATOR table

• db2 –tvf Query_In_Slide_Notes.sql

• Compute Savings Percentage

• Repeat!

25

Optimizing Index Solutions
Index Addition – 1st Index

26

Optimizing Index Solutions
Index Addition – 2nd Index

27

Optimizing Index Solutions
Index Addition – 3rd Index

28

Optimizing Index Solutions
Index Addition – 4th Index

29

Optimizing Index Solutions
Index Addition - Summary

Index Name Timeron Savings Value %

IDX1503092345460 0.0547 0.0000670

IDX1503092345530 79679.8421 97.7376615

IDX1503092346050 0.0000 0.0000000

IDX1503092346070 74988.1343 91.9826733

189.7204018 %

30

And the award for

LEAST valuable

index goes to…

And the award for

MOST valuable

index goes to…

2nd Place MVI

Optimizing Index Solutions
Compare Explain Plans

31

Optimizing Index Solutions
Does a High Value Index have IX Access Only “Baggage”?

32

Let’s play Predicate BINGO!

$ db2 –tvf Query_In_Notes.sql

VERB_DESC & PROTOCOL

are supporting IX Access Only

SAGE ADVICE PART 3:
PREDICTING INDEX IMPACT
ANALYSIS

Part 3: The New Stuff

33

DBA Performance Analysis Challenges

1. What needs to be fixed or improved?
• Make sure you are fighting the right fires - via Weight Analysis

2. What are the optimal design solutions?
• Make sure you are fighting the right fires with the right type of

fire extinguishers and equipment – via Advanced Index Benefit
Analysis

3. Will proposed design solutions cause any inadvertent
harm? Will benefits exceed expectations? Can “multiple
birds be killed with just one stone?”
• Make sure you are fighting the right fires without causing

inadvertent damaging explosions – via Predictive Index Impact
Analysis

Review
The “Heavy_Query” – 90% of CPU & I/O

35

Review
Explain Heavy SQL & Get Costs: 187,411 Timerons

Review
Get Recommended Indexes - 1

Review
Get Recommended Indexes - 2

Advanced Index

Benefit Analysis (AIBA)

identifies that some

indexes are more

beneficial than others

Let’s assume we

want to create the

last 4 indexes

after AIBA

We thus know the

tables that we’ll be

creating indexes on

(impacted tables)

Three Distinct

Table Names

are Impacted

Predictive Index Impact Analysis (PIIA) – Step 1
Determine SQL that Impacts the Impacted Tables

• For each impacted table, determine the SQL queries that
have contributed I/O
• In Sage Advice Part 1, we looked at SQL queries that would find

“heavy” queries contributing I/O to a table or the database overall

• Recall that:

• STMT_TEXT like %TABLE_NAME% has some limitations

• grep –i “TABLE_NAME” has similar limitations

• Query the package cache with MON_GET or SYSIBMADM views

• Be mindful to include relevant and significant workload timeframes
when finding SQL

• Consider capturing and concatenating workloads from
different time periods
• Sample query in notes

39

Predictive Index Impact Analysis (PIIA) – Step 2
Determine the Distinct Impacting SQL

• For efficiency, determine the DISTINCT SQL statements
(workload) of SQL across the UNION ALL of impacted tables.
• For Example:

• SELECT A.C1, B.C1 FROM TB1 A, TB2 B WHERE A.ID1 = B.ID2

• This SQL would contribute I/O to BOTH tables TB1 and TB2, but for PIIA it
only needs to be analyzed once.

• This step is optional but can save time and processing

• By this point, you have determined dozens, hundreds, or
maybe thousands of (distinct) SQL that contribute I/O to the
impacted tables. Henceforth, we’ll simply call this the
“IMPACTING WORKLOAD”

40

Predictive Index Impact Analysis (PIIA) – Step 3
EXPLAIN the IMPACTING WORKLOAD

• For each (distinct) SQL within the Impacting Workload:
• Set USE_INDEX = ‘N’ for ALL Contemplated Indexes

• EXPLAIN the SQL statement to learn its current/original Timeron Cost
(Explain Mode EVALUATE INDEXES).

• Set USE_INDEX = ‘Y’ for the Indexes that you intend to create per
your AIBA (4 out of 5 in our earlier example)

• EXPLAIN the SQL statement to learn its forecasted/new Timeron Cost

• Compute Original Timeron Cost – New Timeron Cost = Timeron

Savings (or degradation if negative), and determine the Savings
Percent. Savings% could be multiplied against workload execution
totals to predict new relative weights (heaviness)

• Tabulate the sums of all Original Timeron Costs and New Timeron
Costs to understand overall workload impact

41

Predictive Index Impact Analysis (PIIA)
ILLUSTRATED

• From earlier slides, there were 5 proposed indexes against 3
different tables.
• Based on AIBA, we’re assuming that 4 of the 5 indexes will be created:

IDX1602060629500, IDX1602060630060, IDX1602060630030, and
IDX1602060629480

• For our Impacting Workload, for sake of example, we’ll assume there
are 10 distinct statements driving I/O to our 3 different tables. Each of
these will be stored individually in a file Snn.SQL where “nn” is the
distinct statement number. For convenience, our original heavy query
will be contained within file S00.SQL.

•

42

Predictive Index Impact Analysis for S00.sql
Original: 187,411 New: 1,760 Savings: 185,651 99.06%

Predictive Index Impact Analysis for S01.sql
Original: 93,690 New: 26 Savings: 93,664 99.97%

Predictive Index Impact Analysis for S02.sql
Original: 93,756 New: 39 Savings: 93,717 99.96%

Predictive Index Impact Analysis for S03.sql
Original: 93,677 New: 14,053 Savings: 85,624 91.40%

Predictive Index Impact Analysis for S04.sql
Original: 93,690 New: 4,192 Savings: 89,498 95.53%

Predictive Index Impact Analysis for S05.sql
Original: 27,483 New: 4,268 Savings: 23,215 84.47%

Predictive Index Impact Analysis for S06.sql
Original: 93,677 New: 59 Savings: 93,618 99.94%

Predictive Index Impact Analysis for S07.sql
Original: 40,330 New: 54 Savings: 40,276 99.87%

Predictive Index Impact Analysis for S08.sql
Original: 27,483 New: 4,268 Savings: 23,215 84.47%

Predictive Index Impact Analysis for S09.sql
Original: 93,756 New: 39 Savings: 93,717 99.96%

Predictive Index Impact Analysis
The Grand Finale – Drum Roll Please!

51

PIIA – Do you kill multiple birds with a few stones? Any
adverse consequences? Safe to create indexes?

Impacting Workload

Query OLD NEW DIFF

0 187411 1760 -185651

1 93690 26 -93664

2 93756 39 -93717

3 93677 14053 -85624

4 93690 4192 -89498

5 27483 4268 -23215

6 93677 59 -93618

7 40330 54 -40276

8 27483 4268 -23215

9 93756 39 -93717

Total 844953 28758 -816195

Off the chart savings!

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

ORIG NEW

S09

S08

S07

S06

S05

S04

S03

S02

S01

S00

COMMERCIAL BREAK- Folks! Don’t Do this the Hard
Way! It’s Time Consuming and Error Prone!

53

DBI’s Brother-Panther® Automates this Analysis!

COMMERCIAL BREAK- Folks! Don’t Do this the Hard
Way! It’s Time Consuming and Error Prone!

54

DBI’s Brother-Panther® Automates this Analysis!

Scott Richard Hayes
DBI Software, @dbisoftware
sales@dbisoftware.com
@srhayes

[D11] Sage Advice Part 3: Predictive
Index Impact Analysis -- Know Before
you CREATE

Please fill out your session

evaluation before leaving!

mailto:sales@dbisoftware.com

